Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials
نویسندگان
چکیده
Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces (S.) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies, and Streptomyces flavofuscus), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus, and Streptomyces ambofaciens. Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers (S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and xylanase preparations from Genencore (Accellerase BG and Accellerase XY). Cellulose and xylan conversion, when conducted using commercial (hemi)cellulases, gave glucose and xylose yields of 30.17 and 68.9%, respectively. The replacement of the cellulolytic preparation from Genencor (Accellerase 1500), with the endo-cellulase from S. argenteolus AE58P resulted in almost 76% of the glucose yield obtained in the presence of the commercial counterpart. Due to the promising results obtained by using the enzymatic crude extracts from S. argenteolus AE58P in the pretreated A. donax saccharification experiments, the proteins putatively responsible for endo-cellulase activity in this strain were identified by proteomics. Several proteins were confidently identified in different Streptomyces spp., eight of which belong to the class of Carbohydrate active enzymes. Overall results highlighted the biotechnological potential of S. argenteolus AE58P being an interesting candidate biocatalyst-producing bacterium for lignocellulose conversion and production of biochemicals and bioenergy.
منابع مشابه
Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application
The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throu...
متن کاملLignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.
The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble produc...
متن کاملSingle-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria
BACKGROUND Consolidated bioprocessing (CBP) of lignocellulosic biomass to hydrogen offers great potential for lower cost and higher efficiency compared to processes featuring dedicated cellulase production. Current studies on CBP-based hydrogen production mainly focus on using the thermophilic cellulolytic bacterium Clostridium thermocellum and the extremely thermophilic cellulolytic bacterium ...
متن کاملافزایش فعالیت آنزیم سلولاز در قارچ تریکودرما ویریده با القای جهش با پرتو گاما
Trichoderma species have been famous for production of cellulases with relatively high enzymatic activity. However, attempts to use their cellulolytic enzymes in the bioconversion of cellulosic wastes have not been successful because of high cost of production and low enzymatic yields. This study aimed to obtain gamma-induced mutants of T. viride with enhanced extracellular cellulase production...
متن کاملInvestigating biomass saccharification for the production of cellulosic ethanol
The production of second generation biofuels -cellulosic ethanol from renewable lignocellulosic biomass has the potential to lead the bioindustrial revolution necessary to the transition from a fossil fuel-based economy to a sustainable carbohydrate economy. Effective release of fermentable sugars through biomass pretreatment followed by enzymatic hydrolysis is among the most costly steps for e...
متن کامل